翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

deep packet inspection : ウィキペディア英語版
Deep Packet Inspection (DPI, also called complete packet inspection and Information eXtraction or IX) is a form of computer network packet filtering that examines the data part (and possibly also the header) of a packet as it passes an inspection point, searching for protocol non-compliance, viruses, spam, intrusions, or defined criteria to decide whether the packet may pass or if it needs to be routed to a different destination, or, for the purpose of collecting statistical information. There are multiple headers for IP packets; network equipment only needs to use the first of these (the IP header) for normal operation, but use of the second header (TCP, UDP etc.) is normally considered to be shallow packet inspection (usually called Stateful Packet Inspection) despite this definition.There are multiple ways to acquire packets for deep packet inspection. Using port mirroring (sometimes called Span Port) is a very common way, as well as an optical splitter.Deep Packet Inspection (and filtering) enables advanced network management, user service, and security functions as well as internet data mining, eavesdropping, and internet censorship. Although DPI technology has been used for Internet management for many years, some advocates of net neutrality fear that the technology may be used anticompetitively or to reduce the openness of the Internet.DPI is used in a wide range of applications, at the so-called "enterprise" level (corporations and larger institutions), in telecommunications service providers, and in governments.==Background==DPI combines the functionality of an intrusion detection system (IDS) and an Intrusion prevention system (IPS) with a traditional stateful firewall. This combination makes it possible to detect certain attacks that neither the IDS/IPS nor the stateful firewall can catch on their own. Stateful firewalls, while able to see the beginning and end of a packet flow, cannot catch events on their own that would be out of bounds for a particular application. While IDSs are able to detect intrusions, they have very little capability in blocking such an attack. DPIs are used to prevent attacks from viruses and worms at wire speeds. More specifically, DPI can be effective against buffer overflow attacks, denial-of-service attacks (DoS), sophisticated intrusions, and a small percentage of worms that fit within a single packet.DPI-enabled devices have the ability to look at Layer 2 and beyond Layer 3 of the OSI model. In some cases, DPI can be invoked to look through Layer 2-7 of the OSI model. This includes headers and data protocol structures as well as the payload of the message. DPI functionality is invoked when a device looks or takes other action, based on information beyond Layer 3 of the OSI model. DPI can identify and classify traffic based on a signature database that includes information extracted from the data part of a packet, allowing finer control than classification based only on header information. End points can utilize encryption and obfuscation techniques to evade DPI actions in many cases.A classified packet may be redirected, marked/tagged (see quality of service), blocked, rate limited, and of course, reported to a reporting agent in the network. In this way, HTTP errors of different classifications may be identified and forwarded for analysis. Many DPI devices can identify packet flows (rather than packet-by-packet analysis), allowing control actions based on accumulated flow information.

Deep Packet Inspection (DPI, also called complete packet inspection and Information eXtraction or IX) is a form of computer network packet filtering that examines the data part (and possibly also the header) of a packet as it passes an inspection point, searching for protocol non-compliance, viruses, spam, intrusions, or defined criteria to decide whether the packet may pass or if it needs to be routed to a different destination, or, for the purpose of collecting statistical information. There are multiple headers for IP packets; network equipment only needs to use the first of these (the IP header) for normal operation, but use of the second header (TCP, UDP etc.) is normally considered to be shallow packet inspection (usually called Stateful Packet Inspection) despite this definition.
There are multiple ways to acquire packets for deep packet inspection. Using port mirroring (sometimes called Span Port) is a very common way, as well as an optical splitter.
Deep Packet Inspection (and filtering) enables advanced network management, user service, and security functions as well as internet data mining, eavesdropping, and internet censorship. Although DPI technology has been used for Internet management for many years, some advocates of net neutrality fear that the technology may be used anticompetitively or to reduce the openness of the Internet.〔

DPI is used in a wide range of applications, at the so-called "enterprise" level (corporations and larger institutions), in telecommunications service providers, and in governments.〔

==Background==
DPI combines the functionality of an intrusion detection system (IDS) and an Intrusion prevention system (IPS) with a traditional stateful firewall. This combination makes it possible to detect certain attacks that neither the IDS/IPS nor the stateful firewall can catch on their own. Stateful firewalls, while able to see the beginning and end of a packet flow, cannot catch events on their own that would be out of bounds for a particular application. While IDSs are able to detect intrusions, they have very little capability in blocking such an attack. DPIs are used to prevent attacks from viruses and worms at wire speeds. More specifically, DPI can be effective against buffer overflow attacks, denial-of-service attacks (DoS), sophisticated intrusions, and a small percentage of worms that fit within a single packet.
DPI-enabled devices have the ability to look at Layer 2 and beyond Layer 3 of the OSI model. In some cases, DPI can be invoked to look through Layer 2-7 of the OSI model. This includes headers and data protocol structures as well as the payload of the message. DPI functionality is invoked when a device looks or takes other action, based on information beyond Layer 3 of the OSI model. DPI can identify and classify traffic based on a signature database that includes information extracted from the data part of a packet, allowing finer control than classification based only on header information. End points can utilize encryption and obfuscation techniques to evade DPI actions in many cases.
A classified packet may be redirected, marked/tagged (see quality of service), blocked, rate limited, and of course, reported to a reporting agent in the network. In this way, HTTP errors of different classifications may be identified and forwarded for analysis. Many DPI devices can identify packet flows (rather than packet-by-packet analysis), allowing control actions based on accumulated flow information.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアでDeep Packet Inspection (DPI, also called complete packet inspection and Information eXtraction or IX) is a form of computer network packet filtering that examines the data part (and possibly also the header) of a packet as it passes an inspection point, searching for protocol non-compliance, viruses, spam, intrusions, or defined criteria to decide whether the packet may pass or if it needs to be routed to a different destination, or, for the purpose of collecting statistical information. There are multiple headers for IP packets; network equipment only needs to use the first of these (the IP header) for normal operation, but use of the second header (TCP, UDP etc.) is normally considered to be shallow packet inspection (usually called Stateful Packet Inspection) despite this definition.There are multiple ways to acquire packets for deep packet inspection. Using port mirroring (sometimes called Span Port) is a very common way, as well as an optical splitter.Deep Packet Inspection (and filtering) enables advanced network management, user service, and security functions as well as internet data mining, eavesdropping, and internet censorship. Although DPI technology has been used for Internet management for many years, some advocates of net neutrality fear that the technology may be used anticompetitively or to reduce the openness of the Internet.DPI is used in a wide range of applications, at the so-called "enterprise" level (corporations and larger institutions), in telecommunications service providers, and in governments.==Background==DPI combines the functionality of an intrusion detection system (IDS) and an Intrusion prevention system (IPS) with a traditional stateful firewall. This combination makes it possible to detect certain attacks that neither the IDS/IPS nor the stateful firewall can catch on their own. Stateful firewalls, while able to see the beginning and end of a packet flow, cannot catch events on their own that would be out of bounds for a particular application. While IDSs are able to detect intrusions, they have very little capability in blocking such an attack. DPIs are used to prevent attacks from viruses and worms at wire speeds. More specifically, DPI can be effective against buffer overflow attacks, denial-of-service attacks (DoS), sophisticated intrusions, and a small percentage of worms that fit within a single packet.DPI-enabled devices have the ability to look at Layer 2 and beyond Layer 3 of the OSI model. In some cases, DPI can be invoked to look through Layer 2-7 of the OSI model. This includes headers and data protocol structures as well as the payload of the message. DPI functionality is invoked when a device looks or takes other action, based on information beyond Layer 3 of the OSI model. DPI can identify and classify traffic based on a signature database that includes information extracted from the data part of a packet, allowing finer control than classification based only on header information. End points can utilize encryption and obfuscation techniques to evade DPI actions in many cases.A classified packet may be redirected, marked/tagged (see quality of service), blocked, rate limited, and of course, reported to a reporting agent in the network. In this way, HTTP errors of different classifications may be identified and forwarded for analysis. Many DPI devices can identify packet flows (rather than packet-by-packet analysis), allowing control actions based on accumulated flow information.」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.